Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425879

RESUMO

Plant diseases pose a significant obstacle to global agricultural productivity, impacting crop quality yield and causing substantial economic losses for farmers. Watermelon, a commonly cultivated succulent vine plant, is rich in hydration and essential nutrients. However, it is susceptible to various diseases due to unfavorable environmental conditions and external factors, leading to compromised quality and substantial financial setbacks. Swift identification and management of crop diseases are imperative to minimize losses, enhance yield, reduce costs, and bolster agricultural output. Conventional disease diagnosis methods are often labor-intensive, time-consuming, ineffective, and prone to subjectivity. As a result, there is a critical need to advance research into machine-based models for disease detection in watermelons. This paper presents a large dataset of watermelons that can be used to train a machine vision-based illness detection model. Images of healthy and diseased watermelons from the Mosaic Virus, Anthracnose, and Downy Mildew Disease are included in the dataset's five separate classifications. Images were painstakingly collected on June 25, 2023, in close cooperation with agricultural experts from the highly regarded Regional Horticulture Research Station in Lebukhali, Patuakhali.

2.
PLoS One ; 19(3): e0298160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442105

RESUMO

Contrails are line-shaped clouds formed in the exhaust of aircraft engines that significantly contribute to global warming. This paper confidently proposes integrating advanced image segmentation techniques to identify and monitor aircraft contrails to address the challenges associated with climate change. We propose the SegX-Net architecture, a highly efficient and lightweight model that combines the DeepLabV3+, upgraded, and ResNet-101 architectures to achieve superior segmentation accuracy. We evaluated the performance of our model on a comprehensive dataset from Google research and rigorously measured its efficacy with metrics such as IoU, F1 score, Sensitivity and Dice Coefficient. Our results demonstrate that our enhancements have significantly improved the efficacy of the SegX-Net model, with an outstanding IoU score of 98.86% and an impressive F1 score of 99.47%. These results unequivocally demonstrate the potential of image segmentation methods to effectively address and mitigate the impact of air conflict on global warming. Using our proposed SegX-Net architecture, stakeholders in the aviation industry can confidently monitor and mitigate the impact of aircraft shrinkage on the environment, significantly contributing to the global fight against climate change.


Assuntos
Aviação , Aprendizado Profundo , Aeronaves , Benchmarking , Mudança Climática
3.
Heliyon ; 10(5): e26801, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444490

RESUMO

Chest radiography is an essential diagnostic tool for respiratory diseases such as COVID-19, pneumonia, and tuberculosis because it accurately depicts the structures of the chest. However, accurate detection of these diseases from radiographs is a complex task that requires the availability of medical imaging equipment and trained personnel. Conventional deep learning models offer a viable automated solution for this task. However, the high complexity of these models often poses a significant obstacle to their practical deployment within automated medical applications, including mobile apps, web apps, and cloud-based platforms. This study addresses and resolves this dilemma by reducing the complexity of neural networks using knowledge distillation techniques (KDT). The proposed technique trains a neural network on an extensive collection of chest X-ray images and propagates the knowledge to a smaller network capable of real-time detection. To create a comprehensive dataset, we have integrated three popular chest radiograph datasets with chest radiographs for COVID-19, pneumonia, and tuberculosis. Our experiments show that this knowledge distillation approach outperforms conventional deep learning methods in terms of computational complexity and performance for real-time respiratory disease detection. Specifically, our system achieves an impressive average accuracy of 0.97, precision of 0.94, and recall of 0.97.

4.
Data Brief ; 53: 110239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445203

RESUMO

This study presents a large multi-modal Bangla YouTube clickbait dataset consisting of 253,070 data points collected through an automated process using the YouTube API and Python web automation frameworks. The dataset contains 18 diverse features categorized into metadata, primary content, engagement statistics, and labels for individual videos from 58 Bangla YouTube channels. A rigorous preprocessing step has been applied to denoise, deduplicate, and remove bias from the features, ensuring unbiased and reliable analysis. As the largest and most robust clickbait corpus in Bangla to date, this dataset provides significant value for natural language processing and data science researchers seeking to advance modeling of clickbait phenomena in low-resource languages. Its multi-modal nature allows for comprehensive analyses of clickbait across content, user interactions, and linguistic dimensions to develop more sophisticated detection methods with cross-linguistic applications.

5.
Tomography ; 10(1): 105-132, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38250956

RESUMO

Ovarian cancer, a deadly female reproductive system disease, is a significant challenge in medical research due to its notorious lethality. Addressing ovarian cancer in the current medical landscape has become more complex than ever. This research explores the complex field of Ovarian Cancer Subtype Classification and the crucial task of Outlier Detection, driven by a progressive automated system, as the need to fight this unforgiving illness becomes critical. This study primarily uses a unique dataset painstakingly selected from 20 esteemed medical institutes. The dataset includes a wide range of images, such as tissue microarray (TMA) images at 40× magnification and whole-slide images (WSI) at 20× magnification. The research is fully committed to identifying abnormalities within this complex environment, going beyond the classification of subtypes of ovarian cancer. We proposed a new Attention Embedder, a state-of-the-art model with effective results in ovarian cancer subtype classification and outlier detection. Using images magnified WSI, the model demonstrated an astonishing 96.42% training accuracy and 95.10% validation accuracy. Similarly, with images magnified via a TMA, the model performed well, obtaining a validation accuracy of 94.90% and a training accuracy of 93.45%. Our fine-tuned hyperparameter testing resulted in exceptional performance on independent images. At 20× magnification, we achieved an accuracy of 93.56%. Even at 40× magnification, our testing accuracy remained high, at 91.37%. This study highlights how machine learning can revolutionize the medical field's ability to classify ovarian cancer subtypes and identify outliers, giving doctors a valuable tool to lessen the severe effects of the disease. Adopting this novel method is likely to improve the practice of medicine and give people living with ovarian cancer worldwide hope.


Assuntos
Neoplasias Ovarianas , Médicos , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico por imagem , Aprendizado de Máquina
6.
PLoS One ; 18(12): e0294701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039283

RESUMO

False news articles pose a serious challenge in today's information landscape, impacting public opinion and decision-making. Efforts to counter this issue have led to research in deep learning and machine learning methods. However, a gap exists in effectively using contextual cues and skip connections within models, limiting the development of comprehensive detection systems that harness contextual information and vital data propagation. Thus, we propose a model of deep learning, FakeStack, in order to identify bogus news accurately. The model combines the power of pre-trained Bidirectional Encoder Representation of Transformers (BERT) embeddings with a deep Convolutional Neural Network (CNN) having skip convolution block and Long Short-Term Memory (LSTM). The model has been trained and tested on English fake news dataset, and various performance metrics were employed to assess its effectiveness. The results showcase the exceptional performance of FakeStack, achieving an accuracy of 99.74%, precision of 99.67%, recall of 99.80%, and F1-score of 99.74%. Our model's performance was extended to two additional datasets. For the LIAR dataset, our accuracy reached 75.58%, while the WELFake dataset showcased an impressive accuracy of 98.25%. Comparative analysis with other baseline models, including CNN, BERT-CNN, and BERT-LSTM, further highlights the superiority of FakeStack, surpassing all models evaluated. This study underscores the potential of advanced techniques in combating the spread of false news and ensuring the dissemination of reliable information.


Assuntos
Benchmarking , Desinformação , Sinais (Psicologia) , Fontes de Energia Elétrica , Redes Neurais de Computação
7.
Sci Rep ; 13(1): 18246, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880386

RESUMO

Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. Traditional machine-learning models struggle with large-scale datasets and complex relationships. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of collecting large real-world datasets with 90% accuracy. Our proposed model demonstrates remarkable accuracy in predicting backorders on short and imbalanced datasets. We capture intricate patterns and dependencies by leveraging quantum-inspired techniques within the quantum-classical neural network QAmplifyNet. Experimental evaluations on a benchmark dataset establish QAmplifyNet's superiority over eight classical models, three classically stacked quantum ensembles, five quantum neural networks, and a deep reinforcement learning model. Its ability to handle short, imbalanced datasets makes it ideal for supply chain management. We evaluate seven preprocessing techniques, selecting the best one based on logistic regression's performance on each preprocessed dataset. The model's interpretability is enhanced using Explainable artificial intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet also achieved the highest F1-score of 94% for predicting "Not Backorder" and 75% for predicting "backorder," outperforming all other models. It also exhibited the highest AUC-ROC score of 79.85%, further validating its superior predictive capabilities. QAmplifyNet seamlessly integrates into real-world supply chain management systems, empowering proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, offering superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management.

8.
Diagnostics (Basel) ; 13(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568902

RESUMO

Accurate prediction of heart failure can help prevent life-threatening situations. Several factors contribute to the risk of heart failure, including underlying heart diseases such as coronary artery disease or heart attack, diabetes, hypertension, obesity, certain medications, and lifestyle habits such as smoking and excessive alcohol intake. Machine learning approaches to predict and detect heart disease hold significant potential for clinical utility but face several challenges in their development and implementation. This research proposes a machine learning metamodel for predicting a patient's heart failure based on clinical test data. The proposed metamodel was developed based on Random Forest Classifier, Gaussian Naive Bayes, Decision Tree models, and k-Nearest Neighbor as the final estimator. The metamodel is trained and tested utilizing a combined dataset comprising five well-known heart datasets (Statlog Heart, Cleveland, Hungarian, Switzerland, and Long Beach), all sharing 11 standard features. The study shows that the proposed metamodel can predict heart failure more accurately than other machine learning models, with an accuracy of 87%.

9.
Data Brief ; 48: 109245, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383776

RESUMO

This data article contains a quality assurance dataset for training the chatbot and chat analysis model. This dataset focuses on NLP tasks, as a model that serves and delivers a satisfactory response to a user's query. We obtained data from a well- known dataset known as "The Ubuntu Dialogue Corpus" for the purpose of constructing our dataset. Which consists of about one million multi-turn conversations containing around seven million utterances and one hundred million words. We derived a context for each dialogueID from these lengthy Ubuntu Dialogue Corpus conversations. We have generated a number of questions and answers based on these contexts. All of these questions and answers are contained within the context. This dataset includes 9364 contexts, 36,438 question-answer pairs. In addition to academic research, the dataset may be used for activities such as constructing this QA for another language, deep learning, language interpretation, reading comprehension, and open-domain question answering. We present the data in raw format; it has been open sourced and publicly available at https://data.mendeley.com/datasets/p85z3v45xk.

10.
Front Plant Sci ; 14: 1321877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273954

RESUMO

Leaf diseases are a global threat to crop production and food preservation. Detecting these diseases is crucial for effective management. We introduce LeafDoc-Net, a robust, lightweight transfer-learning architecture for accurately detecting leaf diseases across multiple plant species, even with limited image data. Our approach concatenates two pre-trained image classification deep learning-based models, DenseNet121 and MobileNetV2. We enhance DenseNet121 with an attention-based transition mechanism and global average pooling layers, while MobileNetV2 benefits from adding an attention module and global average pooling layers. We deepen the architecture with extra-dense layers featuring swish activation and batch normalization layers, resulting in a more robust and accurate model for diagnosing leaf-related plant diseases. LeafDoc-Net is evaluated on two distinct datasets, focused on cassava and wheat leaf diseases, demonstrating superior performance compared to existing models in accuracy, precision, recall, and AUC metrics. To gain deeper insights into the model's performance, we utilize Grad-CAM++.

11.
J Healthc Eng ; 2022: 5905230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569180

RESUMO

Lung cancer is the primary reason of cancer deaths worldwide, and the percentage of death rate is increasing step by step. There are chances of recovering from lung cancer by detecting it early. In any case, because the number of radiologists is limited and they have been working overtime, the increase in image data makes it hard for them to evaluate the images accurately. As a result, many researchers have come up with automated ways to predict the growth of cancer cells using medical imaging methods in a quick and accurate way. Previously, a lot of work was done on computer-aided detection (CADe) and computer-aided diagnosis (CADx) in computed tomography (CT) scan, magnetic resonance imaging (MRI), and X-ray with the goal of effective detection and segmentation of pulmonary nodule, as well as classifying nodules as malignant or benign. But still, no complete comprehensive review that includes all aspects of lung cancer has been done. In this paper, every aspect of lung cancer is discussed in detail, including datasets, image preprocessing, segmentation methods, optimal feature extraction and selection methods, evaluation measurement matrices, and classifiers. Finally, the study looks into several lung cancer-related issues with possible solutions.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/patologia , Tomografia Computadorizada por Raios X/métodos , Diagnóstico por Computador/métodos , Tórax , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
12.
Diagnostics (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36428885

RESUMO

Breast cancer is a significant health concern among women. Prompt diagnosis can diminish the mortality rate and direct patients to take steps for cancer treatment. Recently, deep learning has been employed to diagnose breast cancer in the context of digital pathology. To help in this area, a transfer learning-based model called 'HE-HER2Net' has been proposed to diagnose multiple stages of HER2 breast cancer (HER2-0, HER2-1+, HER2-2+, HER2-3+) on H&E (hematoxylin & eosin) images from the BCI dataset. HE-HER2Net is the modified version of the Xception model, which is additionally comprised of global average pooling, several batch normalization layers, dropout layers, and dense layers with a swish activation function. This proposed model exceeds all existing models in terms of accuracy (0.87), precision (0.88), recall (0.86), and AUC score (0.98) immensely. In addition, our proposed model has been explained through a class-discriminative localization technique using Grad-CAM to build trust and to make the model more transparent. Finally, nuclei segmentation has been performed through the StarDist method.

13.
Sensors (Basel) ; 22(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35336358

RESUMO

Image retrieval techniques are becoming famous due to the vast availability of multimedia data. The present image retrieval system performs excellently on labeled data. However, often, data labeling becomes costly and sometimes impossible. Therefore, self-supervised and unsupervised learning strategies are currently becoming illustrious. Most of the self/unsupervised strategies are sensitive to the number of classes and can not mix labeled data on availability. In this paper, we introduce AutoRet, a deep convolutional neural network (DCNN) based self-supervised image retrieval system. The system is trained on pairwise constraints. Therefore, it can work in self-supervision and can also be trained on a partially labeled dataset. The overall strategy includes a DCNN that extracts embeddings from multiple patches of images. Further, the embeddings are fused for quality information used for the image retrieval process. The method is benchmarked with three different datasets. From the overall benchmark, it is evident that the proposed method works better in a self-supervised manner. In addition, the evaluation exhibits the proposed method's performance to be highly convincing while a small portion of labeled data are mixed on availability.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
14.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502636

RESUMO

Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Encéfalo , Eletroencefalografia , Processamento de Sinais Assistido por Computador , Interface Usuário-Computador
15.
Data Brief ; 34: 106633, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33354607

RESUMO

This article presents a Bangla handwriting dataset named BanglaWriting that contains single-page handwritings of 260 individuals of different personalities and ages. Each page includes bounding-boxes that bounds each word, along with the unicode representation of the writing. This dataset contains 21,234 words and 32,787 characters in total. Moreover, this dataset includes 5,470 unique words of Bangla vocabulary. Apart from the usual words, the dataset comprises 261 comprehensible overwriting and 450 handwritten strikes and mistakes. All of the bounding-boxes and word labels are manually-generated. The dataset can be used for complex optical character/word recognition, writer identification, handwritten word segmentation, and word generation. Furthermore, this dataset is suitable for extracting age-based and gender-based variation of handwriting.

16.
Sci Rep ; 10(1): 22106, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328551

RESUMO

Pandemic defines the global outbreak of a disease having a high transmission rate. The impact of a pandemic situation can be lessened by restricting the movement of the mass. However, one of its concomitant circumstances is an economic crisis. In this article, we demonstrate what actions an agent (trained using reinforcement learning) may take in different possible scenarios of a pandemic depending on the spread of disease and economic factors. To train the agent, we design a virtual pandemic scenario closely related to the present COVID-19 crisis. Then, we apply reinforcement learning, a branch of artificial intelligence, that deals with how an individual (human/machine) should interact on an environment (real/virtual) to achieve the cherished goal. Finally, we demonstrate what optimal actions the agent perform to reduce the spread of disease while considering the economic factors. In our experiment, we let the agent find an optimal solution without providing any prior knowledge. After training, we observed that the agent places a long length lockdown to reduce the first surge of a disease. Furthermore, the agent places a combination of cyclic lockdowns and short length lockdowns to halt the resurgence of the disease. Analyzing the agent's performed actions, we discover that the agent decides movement restrictions not only based on the number of the infectious population but also considering the reproduction rate of the disease. The estimation and policy of the agent may improve the human-strategy of placing lockdown so that an economic crisis may be avoided while mitigating an infectious disease.


Assuntos
Inteligência Artificial , COVID-19/prevenção & controle , Políticas , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Humanos , Pandemias , Distanciamento Físico , Quarentena , SARS-CoV-2/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...